Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut
نویسندگان
چکیده
Drought and salt stress, together with low temperature, are major problems for agriculture because these adverse environmental factors prevent plants from realizing their full genetic potential. Salt stress afflicts agriculture in many parts of the world, particularly irrigated lands [4]. Compared to salt stress, the problem of drought is even more pervasive and economically damaging [1; 3]. Temperature and precipitation are key determinants of climate. The Koppen Climate Classification System recognizes five major climatic types: A, Tropical Moist Climates; B, Dry Climates; C, Moist Mid-latitude Climates with Mild Winters; D, Moist Mid-latitude Climates with Cold Winters; and E, Polar Climates. The Dry Climates are easily recognized (a desert is after all a desert) but water-limited environments can be difficult to classify precisely [30]. Meigs [30] developed a widely used system for classifying water-limited environments based upon mean precipitation. Extremely arid lands have at least 12 consecutive months without rainfall, arid lands have less than 250 mm of annual rainfall, and semiarid lands have a mean annual precipitation of between 250 and 500 mm.
منابع مشابه
Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.).
Plants exposed to certain abiotic stress conditions tend to produce the amino acid proline, which acts as an active osmolyte, a metal chelator, an antioxidant, and a signaling molecule. There is increasing evidence that proline accumulates in plants due to a wide range of abiotic stress, in particular high soil salinity and drought. Therefore, proline content is often used as a marker-assisted ...
متن کاملSimultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)
Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been dem...
متن کاملStudy of Germination and Seedling Growth Parameters of Three Clover Species (Trifolium spp.) under Drought and Salinity Stresses
DOR: 98.1000/2383-1251.1398.6.145.11.1.1575.1610 Extended Abstract Introduction: Agriculture has been influenced by different abiotic stresses such as temperature, drought and salinity, which reduces roughly half of the yield of crops. In many forage plants, germination and early seedling growth are the most sensitive stages of their growth in the face of environmental stresses. Current r...
متن کاملMitigating Abiotic Stress in Crop Plants by Microorganisms
Microorganisms could play an important role in adaptation strategies and increase of tolerance to abiotic stresses in agricultural plants. Plant-growth-promoting rhizobacteria (PGPR) mitigate most effectively the impact of abiotic stresses (drought, low temperature, salinity, metal toxicity, and high temperatures) on plants through the production of exopolysaccharates and biofilm formation. PGP...
متن کاملSulfate transporters in the plant’s response to drought and salinity: regulation and possible functions
Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and w...
متن کامل